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SUMMARY

An efficient finite–discrete element method applicable for the analysis of quasi-static nonlinear soil–
structure interaction problems involving large deformations in three-dimensional space was presented in this
paper. The present method differs from previous approaches in that the use of very fine mesh and small time
steps was not needed to stabilize the calculation. The domain involving the large displacement was modeled
using discrete elements, whereas the rest of the domain was modeled using finite elements. Forces acting on
the discrete and finite elements were related by introducing interface elements at the boundary of the two
domains. To improve the stability of the developed method, we used explicit time integration with different
damping schemes applied to each domain to relax the system and to reach stability condition. With appro-
priate damping schemes, a relatively coarse finite element mesh can be used, resulting in significant savings
in the computation time. The proposed algorithm was validated using three different benchmark problems,
and the numerical results were compared with existing analytical and numerical solutions. The algorithm
performance in solving practical soil–structure interaction problems was also investigated by simulating a
large-scale soft ground tunneling problem involving soil loss near an existing lining. Copyright © 2011
John Wiley & Sons, Ltd.
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1. INTRODUCTION

The mechanics of soil movement and particle loss near an existing subsurface structure is a challenging
soil–structure interaction problem. Standard finite element methods (FEM) are not suitable to analyze
these problems because of the unpredictable location and direction of particle movements. In addition,
modeling soil behavior following local failure is significantly challenging using FEM. Discrete element
method (DEM), on the other hand, has proven to be promising for such analysis as it accounts for the
interaction and relative movement of soil particles at the microscale and macroscale levels. Several
researchers have successfully used DEM to simulate the response of both laboratory size samples in
triaxial compression (e.g. [15]) as well as large-scale applications (e.g. [17]). One of the disadvantages
of the DEM is the large amount of calculations needed to model the details of a real geotechnical en-
gineering problem particularly those involving soil–structure interaction. Capturing the soil behavior
(e.g. shear band development) at the microscale level in these problems necessitates the use of signif-
icantly small particles that could render the cost of the numerical investigation to be practically unfea-
sible. Therefore, there is a need for the development of a new tool that allows for the analysis of the
previous conditions, considering both the microscale and the macroscale features of the problem.
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Oñate and Rojek [21] developed a procedure to combine DEM and FEM for the dynamic analysis of
geomechanics problems using an interface at the boundary of the finite element (FE) and discrete ele-
ment (DE). A similar procedure was developed by Azevedo and Lemos [1], where the forces at the
boundary transferred to the FEs are calculated at the interaction points. Both methods were developed
in two-dimensional space, and the results obtained from the numerical analysis do not agree well with
the experimental data. This was contributed to the fact that the spurious wave reflection at the interface
was not considered.

Han et al. [13] developed a method to couple FE and DE to simulate the shot peening process; the
shot was represented by DE, and the workpiece was modeled using FEs. However, without the treat-
ment of the spurious wave reflection, the size of the FEs at the interface has been reduced to one tenth
of the DE, which led to a significant increase in the amount of computation.

Xiao and Belytschko [25] used the bridging domain procedure to couple continuum with molecular
models. The spurious wave reflection at the molecular/continuum interface was avoided. A slightly
different treatment of the bridging domain was developed by Ben Dhia and Rateau [5] using the so-
called Arlequin method. The minimum potential energy was applied to all domains. Various
authors have used the previously mentioned method in molecular dynamic such as Liu et al. [16]
and Prudhomme et al. [22]. Although it has shown efficiency in reducing the spurious wave reflection,
the number of elements used in the analysis increased as well as the complexity of the formulation,
which limits the application of the method to effect dynamic problems.

Recently, Fakhimi [12] proposed a combined FE–DE method to simulate a triaxial test such that
brick elements were used to simulate the flexible wall around the soil sample. The brick elements were
divided into several small tetrahedral elements to prevent the spurious stiffness of the FEs [12], and
therefore a significantly large number of FEs were used in the analysis. Because the equations of mo-
tion were solved explicitly, the time step was reduced to a very small value, which led to more itera-
tions to reach the desired state.

The aim of this research is to develop an efficient three-dimensional finite–discrete element method
to analyze quasi-static problems involving large deformation and failure. In the proposed method, DEs
are used to simulate the domain in which large deformation or failure occurs, whereas the rest of the
problem is simulated using FEs. The boundary of the FE and DE domains is modeled using
interface elements. Suitable damping schemes are applied for each domain to relax the system and
to maintain the numerical stability. By using the appropriate damping schemes for each domain,
numerical stability has been ensured without decreasing the element size leading to a significant
improvement in calculation speed.

The developed algorithm was implemented into the Discrete Element Open Source code YADE [14]
integrated with a specifically developed Finite Element Package [9] using C++ programming. An ini-
tial condition generation package for the DE [10] was also implemented into the code. Several numer-
ical examples are included to demonstrate the efficiency of the proposed method.
2. GOVERNING EQUATION AND FORCE DESCRIPTION

In deriving the governing equations, the granular material located near a discontinuity was
modeled using DEs, whereas FEs were used to simulate the rest of the domain. The central
difference time integration scheme is adopted for both FE and DE subdomains, as described in
the following sections.
2.1. DE framework

The centered second-order finite difference scheme is used such that the position (orientation) of each
particle remains unchanged during each time step and the forces are calculated from the force–
displacement relationship. When all forces acting on a particle i are determined, either from other par-
ticles or from the boundaries, the problem reduces to the integration of Newton’s equations of motion
for the translational and rotational degrees of freedom, given by
Copyright © 2011 John Wiley & Sons, Ltd. Int. J. Numer. Anal. Meth. Geomech. 2013; 37:130–149
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mi
d2

dt2
!ri ¼ !

f i (1)

and

Ii
d2

dt2
!Φi ¼ !

Mi (2)

where mi,
!ri, and !Φi are the mass, position, and orientation vectors in the space of particle i, respec-

tively. Ii is the moment of inertia vector of particle i and is defined as

Ii ¼ qimi di=2ð Þ2 (3)

where di is the diameter of particle i and qi is the dimensionless shape factor.
Interactions are short range and active at contacts only, so that the total force (torque) on

particle i is !
f i ¼

P
c

!
fci

!
Mi ¼

P
c

!
Mc

i

� �
, where the sum runs over all contacts c of particle i. The

damping coefficients are applied to forces and moments for computational purposes. Hence, the pro-
blems can be solved once all forces acting at the contact (see Figure 1) are determined.

To account for the fact that real grain sizes are much smaller than the spheres used in the
analysis and grains are not generally spherical and may exhibit a rough surface texture, the
local constitutive model uses the moment transfer law with rolling resistance [2], which was
adopted in the present formulation. Despite its simplicity, introducing rolling resistance in the model
was found to allow for the mechanical properties of the sand to be captured even when a relatively
small number of spherical particles were used in the analysis. The procedure to calculate the contact
forces using the moment transfer law is discussed in the next paragraph.

The normal and the tangential forces are calculated as follows:

!
fnci ¼ Kn

!
Δn (4a)

!
fsci ¼ Ksd

!
Δs (4b)

where
!
fnci and

!
fsci are the normal and tangential forces at contact c of particle i, Kn and Ks are the

normal and tangential stiffness at the contact,d
!
Δs is the incremental tangential displacement, and

!
Δn is

the normal penetration depth between the two particles calculated using

!
Δ
��� ���

n
¼ 0:5� R1 þ R2 � O1O2ð Þ (5)

where R1 and R2 are the radii of spheres 1 and 2, respectively, and O1O2 is the distance between the
centers of the two spheres (Figure 1a).

The stiffness of the two elements in contact is connected in series; thus, Kn and Ks are defined by the
following equations:
KsSphere 1
Sphere 2

Kn

 2δ ν 

Sphere 1
Sphere 2

R1
O1 O2

R2

Figure 1. The DE interaction and force-displacement law.
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Kn ¼
kAn�kBn
kAnþkBn
r

(6a)

Ks ¼
kAs �kBs
kAs þkBs
r

(6b)

where indices [A] and [B] represent the two spheres in contact; r is the average radius of the two
spheres.

r ¼ rA þ rB
2

(6c)

The shear force is truncated if its absolute value is larger than the maximum value given by Mohr–
Coulomb criterion:

!
f max
sci ¼ !

fncij j � tan’i (7)

where ’i is the internal friction coefficient.
The rolling resistance is defined by the component acting in the contact plane. On the other hand, the

elastic moment vector ML
elasic resulting from the rolling part in the local set of axes is written as

ML
elasic ¼ kri � θL

ri (8)

where kri is the rolling stiffness defined as

kri ¼ b� Ks � r2 (9)

where b is a dimensionless coefficient used for the rolling stiffness.
The elastic limit is controlled by the plastic moment vector ML

elasic such that

ML
plastic

��� ��� ¼ ��r� !
f nci
��� ��� (10)

where � is a dimensionless coefficient used for the plastic moment.
If the elastic limit is reached, the angular rolling vector, θr, is computed as

θL
ri ¼

ML
plastic

kri
(11)

The rolling moment, Mr, in the moment transfer law is defined by the minimal norm of the two
moments given by

If ML
elastic

�� �� < ML
plastic

��� ��� : Mr
i ¼ ML

elastic

�� �� and θL
ri ¼

ML
elastic

kri
(12a)
If ML
elastic

�� ��≥ ML
plastic

��� ��� : Mr
i ¼ ML

plastic

��� ��� ML
elastic

ML
elastic

�� �� and θL
ri ¼

ML
plastic

kri
(12b)
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The torque in Equation (2) is then calculated as

!
M

c

i ¼
!
lci �

!
fci þMr

i (13)

2.2. FE framework

The adaptive dynamic relaxation algorithm previously developed by Dang and Meguid [9] for elasto-
plastic geomaterials is used in the present FE formulation. The spatial discretization of a damped struc-
tural system can be written as

Kxþ Cx:þMx:: ¼ P (14)

where K, C, and M are the stiffness, damping, and mass matrices, respectively; x represents the dis-
placement vector; and P is the external force vector. The internal force vector F can be assembled
on an element by element basis such that F =

R
Ω
BTsdΩ, where the B matrix is derived from the shape

functions of the element.
To avoid the need for the assembly and factorization of the global matrices, we used a mass

proportional damping (cM) together with a diagonal (or lumped) mass matrix (M) obtained. Equation
(14) can therefore be written as

Kxþ cMx:þMx:: ¼ P (15)

where c is the damping coefficient for mass proportional damping.

2.3. Time step equation

In the central difference method, the velocities are defined at the midpoint of the time step, and the
approximation for the temporal derivatives is given as

x:nþ1=2 ¼ 1
Δt

xnþ1 � xn
� �

(16)

x::n ¼ 1
Δt

x:nþ1 � x:n
� �

(17)

where Δt is the fixed time step increment. There are generally two methods to derive an incremental
relationship: (i) assuming constant acceleration over Δt and (ii) assuming constant velocity over Δt.
In this study, the latter method was adopted and the velocity was taken as the average value over Δt:

x:n ¼ 1
2

x:nþ1=2 þ x:n�1=2
� �

(18)

2.4. Stability time steps

For the stability of the central difference integrator, the time step for both domains must be smaller than
a limit derived based on the well-known Courant–Friedrichs–Lewy condition.

Δt≤
2ffiffiffiffiffiffi
lm

p (19)

where lm is the maximum eigenvalue. An upper bound to the maximum eigenvalue can be obtained
from Gerchgorin’s theorem as follows
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For FEs; lm ≤ max
Xn
j¼1

Kij

�� ��
Mii

(20)

For DEs; lm ≤
max ks; knð Þ

mi
(21)

where Kij is a coefficient in the element consistent tangent stiffness matrix, Mii is the element diagonal
(or lumped) mass matrix, ks and kn are the tangential and normal stiffness of DEs, respectively, and mi

is the directional mass vector of the DEs. Stability time step is then taken as the minimum of the two
values obtained for FEs and DEs.

2.5. Damping schemes

Because the present study is concerned with static geotechnical problems, damping coefficients are
incorporated into the time step equations to return the simulated systems to static condition. Because
of the different nature of FEs and DEs, and to ensure numerical stability, two different damping
schemes are applied for the two subdomains namely Rayleigh damping [9] and Cundall nonviscous
damping [8]. A brief description of the two schemes is provided below.

2.5.1. FE damping. Rapid convergence is usually obtained when the ratio of the maximum to
minimum eigenvalues is as small as possible. The optimal convergence condition is reached if

c≤ 2
ffiffiffiffiffi
l0

p
(22)

where l0 is the minimum eigenvalue. To estimate the minimum eigenvalue, the mass-stiffness Ray-
leigh quotient can be used such that

l0 ffi
x:n�1=2
� �T

Snx: n�1=2

x:n�1=2
� �T

Mx:n�1=2
(23)

where S is the lumped stiffness matrix for linear problems. Lumped stiffness matrix is calculated sim-
ilar to the lumped mass matrix. For nonlinear problem, Sn is determined as follows:

Sn ffi Fn � Fn�1

Δtx:n�1=2
(24)

where Fn and Fn�1 are the element internal force vectors at time step n and n� 1, respectively
No additional parameters are required because the algorithm automatically adjusts the optimal

damping coefficient and the time step on the basis of the changes in the element consistent tangent
stiffness.

Having the damping coefficient c, substituting Equations (16)–(18) into Equation (15), the expres-
sions for advancing the velocity and displacement vectors, respectively, can be written as

x:nþ1=2 ¼ 2� Δtc
2þ Δtc

x:n�1=2
� �

þ 2Δt
2þ Δtc

M�1 Pn � Fnð Þ (25)

xnþ1 ¼ xn þ Δtx:nþ1=2 (26)

where Fn and Pn are the internal and external force vectors, respectively, at time step increment n. The
inverse of M matrix is trivial because M is diagonal.
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2.5.2. DE damping. In the Cundall nonviscous damping, the energy is dissipated by effectively
damping the equations of motion. A damping-force term is added to the equations of motion, such
that Equations (1) and (2) for each element can be written as

mi
d2

dt2
!ri ¼ !

f i 1� cfð Þ (27)

and

Ii
d2

dt2
!Φi ¼ !

Mi 1� cmð Þ (28)

where cf and cm are the force and momentum damping coefficients, respectively.
3. INTERFACE

3.1. Interface generation

The interaction surfaces can be discretized into three-node triangular elements or four-node
quadrilateral elements, depending on the element used in the FE domain. The interfaces (or facets)
are defined as elements used to transmit the forces between DEs and FEs. In the first case, the
triangular facet is defined by the three nodes of the triangular element. In the latter case, all
quadrilaterals are broken up into four triangular facets (Figure 2), by creating temporary center node
(O), defined by

x Oð Þ ¼ 1
4

X4
i¼1

x ið Þ (29)

When the four nodes are not located in the same plane, it is obvious that the four triangles will not
add geometrically to the original quadrilateral. This procedure was used by Doghri et al. [11]. The
complicated mapping inversion for quadrilateral facet is also considered to be a disadvantage.

In this study, all facets are implicitly three-node triangles, with nodes numbered 0, 1, and 2 unless
otherwise indicated. Consider a three-node triangular facet A as show in Figure 3, the tangential base
of the facet is augmented by an outward normal given by

!n A ¼
!e1 �!e2!e1 �!e2
�� �� (30)

where !n A
is the normal vector of facet A and !e1 and !e2 are two edge vectors of the triangle facet

defined as
1

2

3

4

1

2

3

4

O

Figure 2. Triangular facet setup.
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Figure 3. Three-node triangular master facet: projection point, edge vectors and natural coordinate.

FEM FOR SOIL–STRUCTURE INTERACTION PROBLEMS 137
!ei ¼ x ið Þ � x 0ð Þ (31)

Given the facet normal, the projection of any point onto the facet can be easily determined. Now
consider a projection (P) of a point onto the interface surface, A is the facet element to which it belongs,
and x represents its natural coordinates. The mapping FE interpolation gives

x Pð Þ ¼
X2
i¼0

Nix ið Þ (32)

where the shape functions Ni are defined with respect to the natural coordinates of the projection point

N0 ¼ 1� xP1 � xP2 ; N1 ¼ xP1 ; N2 ¼ xP2 (33)

3.2. Geometrical parameters for the contact constitutive law

The use of combined FE–DE models involves treatment of the contact between the spherical DEs and
the facets. The contact force between the sphere and the facet is decomposed into normal and tangential
components. Depending on the contact constitutive law, the contact model between the DE and the
facet may include cohesion, damping, friction, wear, heat generation, and exchange. However, the
geometrical parameters needed for the constitutive models generally include the contact normal
vector, the normal penetration depth (or the gap between a sphere and the facet in case of cohesive
law), and the relative and rotational velocities at the contact point. The procedures to derive these
quantities are discussed in the next section.

3.2.1. Contact detection. A two-stage contact detection algorithm is used in this research. The set of
potential contacts between objects is first obtained through spatial sorting, and then in the second stage,
the specific parameters needed for the constitutive law is determined. Various methods of spatial
sorting such as the grid method, the octree technique, and the body-base approach have been
reported in the literature [19, 20]. As soon as a sphere and a facet are detected in possible contact
(see Figure 4), the gap value is calculated as

g ¼ x Cð Þ � x 0ð Þ
� �

�!n A
(34)

where x(C) is the coordinate of the sphere center and x(O) is the coordinate of vertex O.
The first test is then carried out such that

No contact if g > R (35)

where R is the sphere radius.
In case of the gap value less than the sphere radius, the natural coordinates of the projection of the

sphere center on the facet are calculated as
Copyright © 2011 John Wiley & Sons, Ltd. Int. J. Numer. Anal. Meth. Geomech. 2013; 37:130–149
DOI: 10.1002/nag



x (P)

C

0

2

1

ωc

An

Figure 4. Contact between a sphere and a facet.
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x Pð Þ
1 ¼

!w2� x Sð Þ � x 0ð Þ� �
!w2 �!e1

and x Pð Þ
2 ¼

!w1� x Sð Þ � x 0ð Þ
� �
!w1 �!e2

(36)

where !w1 and
!w2 are dual basic defined as

!w1 ¼ !n A �!e1 and !w2 ¼ !n A �!e2 (37)

There are three possible cases of a sphere in contact with a facet: (i) a sphere contacts a facet surface,
(ii) a sphere contacts a facet edge, and (iii) a sphere contacts a facet vertex. Each case is examined
explicitly to ensure numerical stability.

3.2.2. Evaluating contact points, contact normal, and normal penetration depth

3.2.2.1. Surface contact. The contact conditions between a sphere and a facet surface is defined as

Surface contact exists if
0 < x Pð Þ

1 < 1 and

0 < x Pð Þ
2 < 1 and

0 < x Pð Þ
1 þ x Pð Þ

2 < 1

8><
>: (38)

As suggested by Doghri [11], taking average normals at all nodes introduces some smoothness in
the contact procedure and improves the stability of the contact algorithm; the normal n(i) to each node
excluding the temporary center nodes is computed by taking the sum of the normals to all triangular facets
attached to the node. The normals are then normalized to construct unit vectors. The normal at the center
node is calculated by averaging the normals at the nodes of the original quadrilateral face as

!n Oð Þ ¼ 1
4

X4
i¼1

n ið Þ (39)

A sphere center is then projected on a facet using the average normals at the nodes. The procedure is
described as follows:

Compute the normal to the facet: !n Δ ¼ !e 1 �!e 2

Compute the gap along the normal to the facet: gN ¼ !n Δ� x Cð Þ � x 0ð Þ� �
Construct a triangle that contains the sphere center and is parallel to the given facet. Nodes of the new

triangle are denoted by (0*, 1*, and 2*) and are defined as x i�ð Þ ¼ x ið Þ þ g ið Þ!n ið Þ
, i = 0, 1, 2, where

n(i*) is the average normal at node (i), and g(i) components are calculated using g ið Þ ¼ gN
n ið Þ�nΔ.

Knowing the coKnowing the coordinates of the facet nodes, the natural coordinates of the sphere
center projection can be easily found.
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The interpolated normal (also the contact normal) at the projection point P (also the contact point,
the normal penetration depth (Δn), and the contact point coordinates (x Pð Þ) are expressed by

!n Pð Þ !n Pð Þ��� ��� ¼
X2
i¼0

Ni
!n ið Þ

(40)

Δn ¼ R� x Cð Þ � x P�ð Þ
� �

�!n Pð Þ ¼ R� x Cð Þ �
X2
i¼0

Nix ið Þ
 !

�!n Pð Þ
(41)

x Pð Þ ¼
X2
i¼0

Nij
Pð Þ (42)

3.2.2.2. Vertex contact. The necessary (but not sufficient) condition that a sphere is in contact with
the facet vertex is

Vertex contact exists if

x Pð Þ
1 ¼ x Pð Þ

2 ðcontact with vertex 0Þ
x Pð Þ
2 ¼ 1� x Pð Þ

1 � x Pð Þ
2 ðcontact with vertex 1Þ

x Pð Þ
1 ¼ 1� x Pð Þ

1 � x Pð Þ
2 ðcontact with vertex 2Þ

8>>><
>>>:

(43)

The contact normal and the normal penetration depth are given by

!n Pð Þ !n Pð Þ��� ��� ¼ x Cð Þ � x ið Þ (44)

Δn ¼ R� x Cð Þ � x ið Þ
� �

�!n Pð Þ
(45)

where x(i) is the coordinate of the vertex in contact.
The additional condition for vertex contact is Δn> 0. In this case, the contact point is the vertex de-

termined in Equation (43).

3.2.2.3. Edge contact. For all of the other possibilities, a sphere is assumed to be in contact with the
facet edge. A quick check is performed to determine the closest edge to the sphere center. The

minimum of x Pð Þ
1

��� ���; 1� x Pð Þ
1

��� ���; x Pð Þ
2

��� ���; 1� x Pð Þ
2

��� ���; 1� x Pð Þ
1 � x Pð Þ

1

��� ���; x Pð Þ
1 þ x Pð Þ

1

��� ���n o
is taken. The condi-

tions to determine the closest edge are

x Pð Þ
1

��� ��� or 1� x Pð Þ
1

��� ��� contact with edge 0� 2

x Pð Þ
2

��� ��� or 1� x Pð Þ
2

��� ��� contact with edge 0 and 1

1� x Pð Þ
1 � x Pð Þ

2

��� ��� or x Pð Þ
1 þ x Pð Þ

2

��� ��� contact with edge 1 and 2

(46)

The projection point P (or the contact point) of the sphere center C with the edge (mn) is calculated
using
Copyright © 2011 John Wiley & Sons, Ltd. Int. J. Numer. Anal. Meth. Geomech. 2013; 37:130–149
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x Pð Þ ¼ x mð Þ þ!x Cð Þ� !x nð Þ �!x mð Þ� �
�!x mð Þ� !x nð Þ �!x mð Þ� �

!x nð Þ �!x mð Þ��� ���2 (47)

where !x mð Þ
, !x nð Þ

, and !x Cð Þ
are the vector coordinates of points m, n, and C, respectively.

The contact normal and the normal penetration depth are calculated as

!n Pð Þ !n Pð Þ��� ��� ¼ x Cð Þ � x Pð Þ (48)

Δn ¼ R� x Cð Þ � x Pð Þ
� �

�!n Pð Þ
(49)

The additional condition for edge contact is Δn> 0.

3.2.3. Additional parameters. Besides the geometric and the material parameters used in the
constitutive law, other parameters can generally be derived from the relative and rotational velocities
at the contact point. The velocity at the contact point can be interpolated from the velocity of the
facet nodes such that

!
u:

Pð Þ ¼
X2
i¼0

Ni u
:! ið Þ

(50)

where u:
! ið Þ

is the velocity at node i of the facet. For quadrilateral elements, the velocity of the center
node 0 is taken as the average velocity of the quadrilateral nodes to which the facet attaches. The rel-
ative velocity at the contact can be calculated using

u:
!

r ¼ !
u:

Cð Þ þ R�! o Cð Þ �!n Pð Þ
	 


� !
u:

Pð Þ
	 


(51)

and the angular velocity of the facet can be calculated based on Fakhimi [12] as
Z

Y

0.5 m 

1 m 

1 m 

10 m 

Z

X

2 m 

P = 25.5 kPa 

a) Problem definition 

b) Element mesh c) Interface mesh

Figure 5. Fixed beam under uniform loading.
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Table I. Material properties used in the model validation.

Case Poisson’s ratio Young’s modulus (Pa) Unit weight (kN/m3) Density (kg/m3)

Fixed beam Beam 0.25 30 � 106 0 2600
Interface 0.25 30 � 106 0 2600

Simply support plate Plate 0.2 150 � 106 0 2600
Interface 0.2 150 � 106 0 2600
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vi ¼ 1
2

u: k;jð Þ � u: j;kð Þ
� �

(52)

where i, j, and k are the 0, 1, and 2 directions. The quantities u:(i,1), u
:
(i,2), and u:(i,3) can be calculated on

the basis of the nodal velocities (see Figure 3 for node denotation) and the facet normal n

u: 2ð Þ
i � u: 1ð Þ

i

u: 0ð Þ
i � u: 2ð Þ

i
0

8<
:

9=
; ¼

x 2ð Þ
1 � x 1ð Þ

1 x 2ð Þ
2 � x 1ð Þ

2 x 2ð Þ
3 � x 1ð Þ

3

x 0ð Þ
1 � x 2ð Þ

1 x 0ð Þ
2 � x 2ð Þ

2 x 0ð Þ
3 � x 2ð Þ

3
n1 n2 n3

2
64

3
75 u: i;1ð Þ

u: i;2ð Þ
u: i;3ð Þ

8<
:

9=
; (53)

3.3. Force distribution

When all the parameters required for the constitutive law are determined as described earlier, the forces
acting at the contact can be calculated (i.e. using Equations (4a), (4b), (5), and (7)). The forces is then
distributed to the nodes as follows

Fi ¼ fcontactNi (54)

where Fi is the nodal force at node i, fcontact is the contact force, and Ni is the shape function obtained
using the natural coordinates of the contact point x(P). If quadrilateral elements are used at the interact-
ing surface, the nodal forces at node 0 (or the center node of the facet) are distributed equally to all
nodes of the element.

3.4. Numerical improvement

There are cases where a sphere is found to be in contact with more than one facet at a common edge or
corners at a given time step. In the following time step, the sphere may be in contact with only one
facet with almost the same geometric parameters. As a result, the forces acting on the sphere and the
facet nodes will jump dramatically (i.e. the force magnitude reduces and changes direction if the sphere
is in contact with two facets in a previous time step). To improve the smoothness and the numerical
stability, we developed a simple and efficient algorithm such that the coordinates of the contact points
associated with each sphere are remembered and compared with the others. If the distances among
those contact points are less than a certain tolerance, a duplication number (nd) associated with each
contact point is calculated. The forces acting on the sphere and facet nodes are then divided by that
number.

F ¼ F=nd (55)

where F is the force vector acting on the sphere or the facet node.
Figure 6. Fixed beam: snapshot as the stability condition is reached.

Copyright © 2011 John Wiley & Sons, Ltd. Int. J. Numer. Anal. Meth. Geomech. 2013; 37:130–149
DOI: 10.1002/nag



2

3

4

5

6

7

8

2 12 22 32 42 52 62

Sp
he

re
 c

oo
rd

in
at

e 
(m

)

Time (s)

X coordinate for damping coefficient = 0.2

X coordinate for damping coefficient = 0.4

X coordinate for damping coefficient = 0.6

Figure 7. Effect of damping coefficient on the stability of the DE analysis for fixed beam simulation.
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4. VALIDATION

The developed algorithm has been validated using two benchmark problems: (1) Fixed beam under
uniform loading and (2) Simply supported square plate. Details are given in the next section.
4.1. A sphere over fixed beam

A linear elastic beam with two fixed ends is used to test the response of solid element facets in contact
with a spherical particle. A uniform pressure is applied in the negative z direction at the top of the beam
as shown in Figure 5a. A sphere with a diameter of 0.1m is then placed on the surface of the beam. A
fictitious weight of 9810N was assigned to the sphere. As the beam deforms under the applied pres-
sure, the sphere moves along the beam surface until the system reaches stability. A mesh of 4 � 4
� 20 reduced-integration hexahedron elements [3] with hourglass control was used in the simulation
(see Figure 5b). An interface mesh that consists of three-node triangles is used as shown in Figure 5c.
Material properties used in the analysis are summarized in Table I.
5 m 

5 m 
P = 2.55 kPa

t = 0.1 m

a) Problem definition 

b) Finite element mesh c) Interface mesh 

1 m  

1 m  

Figure 8. Simply supported square plate: problem description, finite element and interface mesh.
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Figure 9. Simply supported square plate: A snapshot as the stability condition is reached.
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As stability is reached and because of the symmetry of the deformed shape, the sphere is positioned
at the center of the beam as shown in Figure 6. Three simulations were performed using three different
values of Cundall’s damping coefficient. The beam deflection for all three cases is calculated to be
0.323m. The theoretical value obtained using direct integration for the same condition is 0.325m.
The effect of the Cundall’s damping coefficient is shown in Figure 7. It can be seen that as the damping
coefficient increases, the system reaches the stability condition significantly faster.
4.2. Simply supported square plate

A simply supported square plate subjected to a uniform load is analyzed as shown in Figure 8a. Linear
elastic material is assumed for the plate. All sides of the plate are simply supported. A sphere 0.1m in
diameter is placed on top of the plate as shown in Figure 8a. A fictitious weight of 9810N was assigned
to the sphere. Similar to the previous example, as the plate deforms under the applied pressure, the
sphere moves until the system reaches stability. A mesh of 10 � 10 one-point quadrature shell ele-
ments [4] is used in the analysis (Figure 8b). Each shell element is divided into four triangle facets
as shown in Figure 8c. Material properties used in the analysis are summarized in Table I.

A snapshot of the system as the stability condition is reached is shown in Figure 9. The calculated
deflection at the center of the plate is found to be 0.725m, consistent with the analytical solution [24],
which predicts a maximum deflection of 0.726m. Different values of Cundall’s damping coefficient
were also used in this case and the same maximum deflection was calculated for all the cases.
5. NUMERICAL EXAMPLE

The effect of soil particle loss near an existing tunnel on the stresses in the lining is investigated using
the developed algorithm. The problem has been previously investigated using standard FE analyses
[18]. However, the analysis was limited to plane strain condition with small voids because of the nu-
merical instability associated with soil failure. The FE analysis considered only voids developed at the
tunnel spring line and invert because of the sudden failure that would develop if the void was
Tunnel

Zone
experiencing 
Particle loss 

Soil

Figure 10. Particle loss zone introduced above an existing tunnel lining.
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Figure 11. Tunnelling in Mohr-Coulomb soil: Problem definition and finite element mesh.
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introduced at the crown. Thus, to demonstrate the efficiency of the developed FE–DE algorithm, nu-
merical analyses have been conducted to evaluate the effects of soil loss induced at the tunnel crown
on the stresses in the tunnel lining (see Figure 10). The soil in the particle loss zone (weakened zone)
is modeled using DEs and whereas FEs are used to model the rest of the domain.
5.1. Tunneling in Mohr Coulomb material

The first step is to simulate the tunneling procedure and to establish the initial stresses in the soil and
lining. The Mohr Coulomb failure criterion with nonassociated flow rule is adopted for the soil
medium. The tunnel is assumed to have a circular shape with a diameter of 4m and located at a
depth of 10m below the ground surface as shown in Figure 11a.

The lining is modeled using the Belytschko–Tsay shell elements with wrap control [4], whereas
the soil is modeled using eight-node hexahedron elements with hour glass control [3]. The FE mesh is
shown in Figure 11b. The soil volume near the tunnel (from Y= 8m to Y= 12m) is modeled using
spherical particles. To reduce the amount of computation, spheres located between Z=�10m
Table II. Material properties used for the FEs.

Poisson’s ratio Young’s modulus (Pa)
Unit weight
(kN/m3)

Friction angle
(Degree)

Dilatancy angle
(Degree)

Density
(kg/m3)

Soil 0.28 150 � 106 18 30 30 1837
Plate 0.2 20 � 109 25.4 – – 2600
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Table III. The microscopic parameters used for the DEs.

Normal contact stiffness
kn (Pa) Ratio a ¼ ks

kn

Interparticle friction angle
m (degree)

Rolling stiffness
coefficient b

Density
(kg/m3)

Interface 0.75 � 109 0.02 35 0 N/A
DE 0.75 � 109 0.02 35 0 3070
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and Z=�4m have radii that follow a uniform distribution around a mean value of 0.065m, whereas
the spheres located between Z=�4m and Z= 0m have radii that follow a uniform distribution around
a mean value of 0.14m (see Figure 11b). To account for the difference in size of the real grain and
the size of the sphere, we used a local moment transfer law discussed in the Section 2.1 [2]. The
DE packing is generated using the algorithm developed by the authors and reported elsewhere
[10]. Because the scope this paper focuses on combining the DE and the FE, only a brief de-
scription will be provided. Details of the algorithms can be found in the previously mentioned
reference. The spheres are first generated within a small initial packing. The obtained initial
packing is then flipped over the main three axes to produce the flipped sample packing [10].
The final packing is then generated using the flipped sample packing, which produces a final packing
having the same structure of the initial packing. Therefore, the calibration process used to determine
the DE parameters [2] is only performed on an initial small packing, which leads to significant
savings in computational time.

For each face of the hexahedron and shell elements in contact with DEs (see Figures 11a and 11b),
four facets are used to model the interface. The entire model is restrained in the horizontal direction at
the vertical boundaries (smooth rigid) and is restrained in both the vertical and the horizontal directions
at the lower boundary (rough rigid). Fully drained condition is assumed. Material properties used in the
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Figure 12. Triaxial test results for DEM packing with a confining stress of 100 kPa.
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Figure 13. Tunnelling procedure for the DE domain.
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analysis are given in Tables II and III. The lateral earth pressure coefficient (Ko) is taken as 0.39. To
match the stress strain response of the DEs with FEs, the calibration procedure described by Belheine
et al. [2] was carried out. Several triaxial tests were performed on the DEs packing to calibrate the DEs
properties. The values of ks; a ¼ ks

kn
; m; b, and � are determined as given in Table III. With the previ-

ously mentioned input values, the response of the triaxial test of DEs packing agrees well with the the-
oretical stress strain behavior of Mohr–Coulomb material used in FE domain (see Figure 12). To
maintain a consistent unit weight of the soil, a density of 3070 kg/m3 is used for the DEs. For
the calculation of the initial condition, the shell elements used to model the tunnel lining are kept
inactive.

After the initial condition is generated, the soil elements (both FE and DE) inside the tunnel are
deactivated. To simulate the volume loss experienced during tunnel excavation [23], we considered
both the FE and the DE zones located within the tunnel circumference. The boundary nodes located
along the lining within the FE zone are allowed to move freely under the effect of the residual stresses
until they reach the target perimeter of the tunnel as shown in Figure 13. In the DE zone, interface ele-
ments located along the lining are first activated, and the interface nodes are moved with a predeter-
mined displacement calculated by the displacement of the closest nodes in the FE zone for each
time step (Figure 13). The predetermined displacement vector has the same coefficients as the displace-
ment vector of the FE nodes in the plane perpendicular to the tunnel direction while the coefficient in
the tunnel direction remains constant. The target perimeter is calculated on the basis of the volume loss
value caused by tunneling procedure (the value of 1% of volume loss was taken in this paper). After all
nodes reach the target perimeter, the lining (modeled by shell elements) is activated. The simulation is
kept running until the stability condition is reached.

To calibrate the program, we compared the calculated thrust forces and moments with the numerical
solution obtained using the commercial software Plaxis Tunnel 3D [6] (see Table IV).

Shear force and moment distributions in the tunnel lining are shown in Figure 14. As shown in the
figure, the calculated lining force and moment are consistent throughout the lining, including the cen-
tral section where DEs are used to model the soil above the lining. A smooth transition in both force
and moment distributions was observed along the lining calculated for DEs (near the middle of the lin-
ing) as well as for the FEs (along the rest of the lining).
Table IV. Comparison of tunnel lining thrust force and moment.

Method
Maximum shear

force (kN)
Moment at lining

top (kN�m)
Minimum shear

force (kN)
Moment at spring

line (kN�m)

Plaxis tunnel 3D 22.5 13.865 22.5 14.304
FE–DE 22.735 13.928 23.813 14.557
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Figure 14. Bending moment and shear force distributions in the tunnel lining.
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5.2. Effects of local soil loss on tunnel lining

After the initial stresses are established, particle loss is induced locally to weaken the soil at the
tunnel crown as shown in Figure 10. Although the DEM is capable of modeling the falling of portion
of the soil through the lining, an alternative simplified procedure was chosen such that DEs are deac-
tivated and removed from the model within a predefined spherical shaped zone above the lining. This
procedure was found to accelerate the calculation process. The center of the spherical zone is located at
X= 15m, Y=�10m, and Z= 10m. To simulate the particle loss, we deactivated and removed the DEs
within the target zone from the model. The analysis is kept running until the stability condition is
reached. Six different sizes of the weakened zone are considered by increasing the radius of the weak-
ened zone in six increments, namely, 0.25, 0.5, 0.75, 1, 1.25, and 1.5m. The lining forces and moments
calculated for the difference cases are presented in Figure 15. The sizes of the weakened zones are nor-
malized with respect to the tunnel circumference and expressed using the ratio (Dv/pD), where Rv is the
zone radius, pD is the lining circumference and D is the tunnel diameter.

As shown in Figure 15, the bending moment at spring line initially increased at a slow rate. This was
followed up by a rapid decrease as the size of the weakened zone increased. When the size of the zone
reached 12% of the tunnel circumference, the bending moment decreased to approximately 60% of its
original value. Bending moment at the crown increased consistently for all the examined zone sizes.
Similar trend was also observed for the thrust forces in the lining.
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6. SUMMARY AND CONCLUSIONS

A combined finite–discrete element method for soil–structure interaction under quasi-static condition
was presented. The developed algorithm can be used to combine solid or shell elements with DEs.
Rayleigh damping was used for the FE domain whereas the Cundall’s damping was used for DE
domain. This combination results in a coarser FE mesh and leads to a significant improvement in
the computation speed. Numerical simulations were carried out to calibrate the developed algorithm
and the results were found to agree well with the analytical solutions as well as other numerical
solutions.

A practical example involving soil loss around existing underground tunnel was also presented. The
analysis showed the advantages of the developed method in analyzing complicated soil–structure
interaction problems under quasi-static condition. With the developed method, the analysis of large-
scale problems becomes feasible, inheriting the advantages of both FE and DE methods.
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